
LLNL-PRES-688701
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Apollo:	Lightweight	Models	for	
Dynamically	Tuning	Data-Dependent	Code	
DoE	Centers	of	Excellence	Performance	Portability	
Mee6ng	

David	Beckingsale	

April 20, 2016

LLNL-PRES-688701
2	

§  Emerging	frameworks	like	RAJA	&	Kokkos	allow	portable	code	
to	be	wriDen	with	single	source	kernels	

§  This	provides	a	mechanism	for	tuning	the	code,	but	no	
sugges6ons	as	to	how	to	tune	

§  A	code’s	behavior	depends	not	only	on	the	host	architecture,	
but	also	on	the	input	problem	and	run-6me	adapta6on	

§  Apollo	is	an	auto-tuning	extension	for	RAJA	that	uses	pre-
trained,	reusable	modes	to	tune	data-dependent	code	at	
run6me	on	a	kernel-by-kernel	basis	

What	is	Apollo?	

LLNL-PRES-688701
3	

	
forall<exec_policy>(iset,	[&]	(Index_type	i)		{	
					y[i]	+=	a	*	x[i]	;	
});	
	
§  Execu6on	policy	determines	how	loop	itera6ons	are	scheduled	

to	the	hardware:	OpenMP,	Sequen6al,	CUDA	
§  RAJA	provides	a	na6ve,	C++	mechanism	for	tuning	code	at	the	

kernel	level,	used	in	produc6on	DoE	applica6ons	

§  We	focus	on	tuning	the	execu6on	policy	

RAJA	101	

LLNL-PRES-688701
4	

§  Tradi6onal	auto-tuners	search	a	parameter	space	for	the	best	
configura6on		

§  Using	off-line	training	with	sta6s6cal	classifiers,	we	build	
lightweight	decision	models	that	directly	select	values	for	
tuning	parameters	

§  Our	approach	classifies	kernels	into	categories	where	certain	
tuning	parameters	are	“best”	

§ We	use	these	classifiers	to	generate	condi6onal	statements	
(tuning	models)	that	can	be	evaluated	before	each	kernel	
execu6on	

§  These	tuning	models	are	low-overhead,	and	can	respond	
quickly	to	changes	in	input	data	

Approach	

LLNL-PRES-688701
5	

Apollo	Workflow	

Apollo%Control%Libraries

Applica1on
RAJA::forall<exec_policy>(IndexSet, [=](int i) {
 sigxx[i] = sigyy[i] = sigzz[i] = - p(i) - q(i);
});

%%%%%%%%%%%%%%%RAJA
 apollo::begin();
 forall(EXEC_POLICY_T(),
 iset, loop_body);
 apollo::end();

Apollo
• Dynamically load control library

Apollo%Recorder Apollo%Tuner
• Dynamically evaluate tuning

model using loop
information gathered at
runtime

loop=1,'num_iterations=400,'...
loop=3,'num_iterations=125,'...
loop=N,'num_iterations=376,'...

LLNL-PRES-688701
6	

Tuning	CleverLeaf	

§  CleverLeaf	is	a	hydrodynamics	mini-applica6on	with	Adap6ve	
Mesh	Refinement	(AMR)	

§  AMR	means	that	subdomains	are	created	dynamically	as	the	
applica6on	runs,	depending	on	the	simula6on	
—  subdomain	size	is	strongly	correlated	with	the	best	execu6on	policy	

§  Our	models	use	kernel	informa6on,	as	well	as	applica6on-level	
informa6on	like	global	problem	size	and	current	cycle	count	

§ We	apply	the	models	on	up	to	16	nodes	(256	cores)	with	each	
model	tuning	kernels	execu6ng	on	the	subdomains	local	to	a	
single	MPI	rank	

LLNL-PRES-688701
7	

Tuning	CleverLeaf:	up	to	4.8x	speedup	

16 32 64 12
8

25
6

Processing Cores

0
100
200
300
400
500
600
700
800

R
un

ti
m

e
(s

)

Policy Default

LLNL-PRES-688701
8	

§  Although	our	approach	requires	an	offline	training	step,	the	
models	for	CleverLeaf	were	generated	with	<	2	hours	of	training	
data	and	are	re-usable	across	input	decks	

§ We	are	working	to	make	models	that	can	tune	mul6ple	
applica6ons,	allowing	us	to	batch	training	data	collec6on	and	
amor6ze	the	upfront	cost	

§  Apollo	currently	tunes	execu6on	policies	on	a	homogeneous	
node,	but	with	new	CUDA	8.0	support	for	host/device	lambdas,	
we	can	move	to	predic6ng	where	kernels	should	execute	

LimitaKons	/	What’s	next?	

LLNL-PRES-688701
10	

§ We	add	interface	hooks	to	RAJA	to	allow	Apollo	to	tune	kernel	
parameters	without	recompila6on	

§  Two	control	libraries	can	aDach	to	these	hooks:	
—  Recorder:	to	record	kernel	informa6on	and	run6me	used	to	train	our	

decision	classifiers	
—  Tuner:	contains	the	condi6onal	logic	generated	from	the	classifier	to	

implement	dynamic	parameter	selec6on	

§  The	recorder	collects	informa6on	like	itera6on	count,	kernel	
size,	and	instruc6on	counts	

§  The	tuner	evaluates	the	model	logic	and	writes	a	predicted	
parameter	value	to	a	shared	space	where	it	used	by	the	Apollo	
run6me	to	execute	the	kernel.	

ImplementaKon	

